
ARTICLE IN PRESS
1071-5819/$ - se

doi:10.1016/j.ijh

�Correspond
E-mail addr

bob.briggs@ua

(G.J. de Vreede

j.h.appelman@
Int. J. Human-Computer Studies 64 (2006) 611–621

www.elsevier.com/locate/ijhcs
A conceptual foundation of the thinkLet concept
for Collaboration Engineering

Gwendolyn L. Kolfschotena,�, Robert O. Briggsa,b, Gert-Jan de Vreedea,c,
Peter H.M. Jacobsa, Jaco H. Appelmana

aFaculty of Technology, Policy and Management, Delft University of Technology, P.O. Box 5015 – 2600 GA Delft, The Netherlands
bCenter for Distance Education, College of Rural and Community Development, University of Alaska Fairbanks, US

cCollege of Information Science & Technology, University of Nebraska at Omaha, US

Available online 20 March 2006
Abstract

Organizations increasingly use collaborative teams in order to create value for their stakeholders. This trend has given rise to a new

research field: Collaboration Engineering. The goal of Collaboration Engineering is to design and deploy processes for high-value

recurring collaborative tasks, and to design these processes such that practitioners can execute them successfully without the intervention

of professional facilitators. One of the key concepts in Collaboration Engineering is the thinkLet—a codified facilitation technique that

creates a predictable pattern of collaboration. Because thinkLets produce a predictable pattern of interactions among people working

together toward a goal they can be used as snap-together building blocks for team process designs. This paper presents an analysis of the

thinkLet concept and proposes a conceptual object model of a thinkLet that may inform further developments in Collaboration

Engineering.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Collaboration Engineering; ThinkLets; Collaboration; Object oriented modeling; Collaboration process design; Facilitation; Group Support

Systems
1. Introduction

People frequently join forces to accomplish goals
through collaboration that they could not achieve as
individuals. By collaboration we mean joint effort toward a
goal. Collaboration is essential for value creation (Hlupic
and Qureshi, 2002, 2003), and often used for mission
critical tasks. While team efforts can be productive and
successful, group work is fraught with challenges that
can lead to unproductive processes and failed efforts
(Nunamaker et al., 1991). Many teams therefore rely on
professional facilitators to design and conduct high-
value or high-risk tasks (Niederman et al., 1996; Griffith
et al., 1998).
e front matter r 2006 Elsevier Ltd. All rights reserved.

cs.2006.02.002

ing author. Tel.: +31 (0)15 2783567; fax: +31152 783429.

esses: g.l.kolfschoten@tbm.tudelft.nl (G.L. Kolfschoten),

f.edu (R.O. Briggs), gdevreede@mail.unomaha.edu

), p.h.m.jacobs@tbm.tudelft.nl (P.H.M. Jacobs),

tbm.tudelft.nl (J.H. Appelman).
The need for facilitation increases when teams seek to
use Group Support Systems (GSS) technology. Under
certain circumstances, GSS can lead to order-of-magnitude
increases in team productivity (see (Fjermestad and Hiltz,
1999, 2001) for a comprehensive overview of GSS
research). However, the success of a GSS session is by no
means assured, see e.g. (de Vreede et al., 2003). As with
many tools, GSS must be wielded with intelligence guided
by experience in order for its potential to be realized.
Novice users find the GSS tools easy to operate, but they
typically cannot use the full potential of GSS. Most GSS
users must therefore rely on professional facilitators in
order to derive the benefits offered by GSS (Briggs et al.,
2003; de Vreede and Briggs, 2005).
Skilled facilitators, however, tend to be expensive. They

either have to be trained in-house, or hired as external
consultants. Therefore, many teams who could benefit
from facilitation interventions and from GSS must often
manage without them. One solution to this challenge
would be to reduce the need for skilled facilitation

www.elsevier.com/locater/ijhcs
dx.doi.org/10.1016/j.ijhcs.2006.02.002
mailto:g.l.kolfschoten@tbm.tudelft.nl
mailto:gdevreede@mail.unomaha.edu
mailto:p.h.m.jacobs@tbm.tudelft.nl
mailto:j.h.appelman@tbm.tudelft.nl


ARTICLE IN PRESS
G.L. Kolfschoten et al. / Int. J. Human-Computer Studies 64 (2006) 611–621612
expertise; to find a way that a team could wield the GSS
and manage its collaboration process for itself, without the
ongoing intervention of a professional facilitator but with
predictable results. Addressing this challenge is the domain
of the emerging field of Collaboration Engineering.

Collaboration Engineering is an approach that designs,
models and deploys repeatable collaboration processes
for recurring high-value collaborative tasks that are
executed by practitioners using facilitation techniques and
technology. Collaboration processes designed in Colla-
boration Engineering are processes that support a group
effort towards a specific goal, mostly within a specific
timeframe. The process is build as a sequence of facilita-
tion interventions that create patterns of collaboration;
predictable group behavior with respect to a goal.
The effort involves a continuous reciprocal interaction
(Thompson, 1967), but does not require co-location of
participants. Collaboration Engineering researchers seek to
codify and package key facilitation interventions in forms
that can be re-used readily and successfully by teams that
do not have professional facilitators at their disposal.
Therefore, there are three key roles within Collaboration
Engineering:

A facilitator both designs and conducts a dynamic
process that involves managing relationships, tasks and
technology, as well as structuring tasks and contributing to
the effective accomplishment of the meeting’s outcome
(Bostrom et al., 1993).
Textbox 1
Collaboration Engineering example

A large international financial services organization w
operational risk management (ORM) workshops. They
to be developed that operational risk managers could
the requirements from the ORM domain experts, colla
repeatable collaborative ORM process. This process wa
leading to a number of modifications to the definitio
activities, their interdependencies, and the facilitation
process was shown to a group of 12 ORM experts. Dur
activities was modified and the proposed collaborativ
facilitation techniques. In the period that followed, over
process. To date, these ORM practitioners have mo
participants identify, assess, and mitigate operational

Table 1

Collaboration Engineering roles

Role Process design Proces

Collaboration engineer Repeatable, transferable processes No ex

Facilitator Ad hoc, context specific processes Execut

Practitioner No design Execut
A practitioner is a task specialist who must execute some
important collaborative task like risk assessment or
requirements definition as a part of his or her professional
duties. A practitioner is not necessarily a professional
facilitator who designs new processes for new situations; a
practitioner executes a specific collaboration process on a
recurring basis (Briggs et al., 2003; de Vreede and Briggs,
2005). A practitioner therefore does not need extensive
training as a facilitator, but only needs to learn the specific
skills required to accomplish a particular collaboration
process. The practitioner needs a high-quality, reusable,
transferable process design that can deliver predictable
results.
A collaboration engineer designs and documents colla-

boration processes that can be readily transferred to a
practitioner. This means that a practitioner can execute the
process without any further support from the collaboration
engineer, nor from a professional facilitator.
Table 1 describes the collaboration engineering roles,

their tasks in terms of collaboration process design and
execution, and their required expertise. TextBox 1 provides
an example of a collaboration engineer designing and
transferring a risk management process in a large financial
services firm.
To achieve the required quality and predictability

described above, one of the current foci of Collaboration
Engineering research is to identify and document reusable
elementary building blocks for group process design.
as faced with the challenge to perform hundreds of
requested a repeatable collaborative ORM process
execute themselves. Based on the experiences and
boration engineers developed a first prototype of a
s evaluated in a pilot project within a business unit,
n of the overall process in terms of collaborative
techniques used. The resulting collaborative ORM
ing a half day discussion, the wording and order of
e activities where tested with a number of chosen
200 ORM practitioners were trained to execute this
derated hundreds of workshops where business
risks.

s execution Expertise

ecution, just process transfer Both process and application domain

ion and ad hoc modification Process

ion Application domain



ARTICLE IN PRESS
G.L. Kolfschoten et al. / Int. J. Human-Computer Studies 64 (2006) 611–621 613
Toward that end, researchers have begun to codify a
collection of such building blocks, called thinkLets, see e.g.
Lowry et al. (2002), Enserink (2003), Harder and Higley
(2004), Santanen and de Vreede (2004), Kolfschoten et al.
(2004a). A thinkLet is a named, packaged facilitation

technique that creates a predictable, repeatable pattern of

collaboration among people working towards a goal (Briggs
et al., 2001). ThinkLets can be used as conceptual building
blocks in the design of collaboration processes (Kolfscho-
ten et al., 2004a) and as learning modules of facilitation
techniques for practitioners and novice facilitators
(Kolfschoten and Veen, 2005; de Vreede and Briggs,
2005). A thinkLet is meant to be the smallest unit of
intellectual capital required to be able to reproduce a
pattern of collaboration among people working toward
a goal.

A few examples of thinkLets are presented in Table 2
(see de Vreede and Briggs, 2001) for a more elaborate
description of the mechanics of these thinkLets). Each
thinkLet provides a concrete group-dynamics intervention,
complete with instructions for implementation as part of
some group process. Collaboration process designers who
have a set of specific thinkLets available can therefore shift
part of their attention from inventing and testing solutions
to choosing known solutions (Kolfschoten and Veen,
2005). This may reduce both the effort and the risk of
developing group processes.

To date, Collaboration Engineering researchers have
formally documented approximately 70 thinkLets. Field
experiences suggest that 16 of these thinkLets fill in perhaps
70% of a given collaboration process design; the other
30% of actions a group must perform need more specific
thinkLets, either those described in the set of 70 or new
thinkLets customized for the task at hand (Kolfschoten et
al., 2004a). In this sense, thinkLets have become a powerful
pattern language for collaboration engineers, who use
thinkLet names to describe and communicate sophisti-
cated, complex process designs in a compact form (Briggs
et al., 2003; de Vreede and Briggs, 2005). Case studies
describing such processes include an operational risk
management process at an international financial services
organization on (see TextBox 1 and (de Vreede and Briggs,
2005), a mission analysis process at the US Army’s
Advanced Research Lab (Harder et al., 2005), a knowledge
elicitation process at the European Aeronautic Defense and
Space company (EADS), and a crisis response process in
Table 2

Examples of thinkLets (de Vreede and Briggs, 2001)

Name Purpose

LeafHopper To have a group brainstorm i

Pin-the-tail-on-the-donkey To have a group identify imp

RichRelations To have a group uncover pos

StrawPoll To have a group evaluate a n

MoodRing To continuously track the lev
the Rotterdam Harbor in the Netherlands (Appelman and
Driel, 2005). ThinkLets have also been used successfully
for training facilitators (Kolfschoten and Veen, 2005) and
in collaboration research (Santanen, 2005). While only 70
thinkLets have been formally documented to date, it
appears that the number of possible thinkLets may be
infinite. The original conceptualization of thinkLets frames
them as having three components: A tool, a configuration
of that tool, and the facilitation script (Briggs et al., 2001).
Each adaptation variation of any of these components on a
known thinkLet can become a new thinkLet in its own
right. This could lead to an exponential explosion in the
number of thinkLets, giving rise to much redundancy and
overlap among thinkLets, and to thinkLet ‘‘dialects’’ where
collaboration process designers in different communities
use different names for the same concepts. A large variety
of thinkLets will enable a high chance of fit between
thinkLets and tasks, but thinkLet dialects would make it
difficult to transfer group process knowledge across the
boundaries of local communities of practice. If dialects of
thinkLets would be used jointly, it would increase the
difficulty of the choice for a thinkLet. Therefore, there are
several key goals for the Collaboration Engineering
community:
�

dea

orta

sibl

um

el o
To minimize the explosion of thinkLets by identifying a
stable core of conceptual thinkLets.

�
 To assist facilitators and collaboration engineers in

choosing among the existing set of thinkLets.

�
 To design new thinkLets with the components of other

thinkLets, being mindful not to replicate those that
already exist.

Toward these ends, this paper presents several ap-
proaches to classifying thinkLets, and proposes a new
conceptualization of the thinkLet as a first step towards
enabling collaboration engineers to:
�
 More easily identify the optimal thinkLets for a
collaboration process design.

�
 More easily distinguish the relevant differences among

similar thinkLets.

�
 More easily identify areas of collaborative endeavor for

which no useful thinkLets yet exist.

�
 Consolidate similar thinkLets into a uniform, non-

redundant base set.
s regarding a number of topics simultaneously.

nt concepts that warrant further deliberation.

e categories in which a number of existing concepts can be organized.

ber of concepts with respect to a single criterion.

f consensus within the group regarding a certain issue.



ARTICLE IN PRESS
G.L. Kolfschoten et al. / Int. J. Human-Computer Studies 64 (2006) 611–621614
The remainder of this paper is structured as follows. In
the next section we introduce thinkLets as originally

defined and discuss their limitations. Next we propose a
new conceptualization using the object-oriented modeling
approach. We conclude this paper by discussing the
implications and limitations of our research and proposing
directions for future research.

2. Thinklets and collaboration process design

A collaboration process is a series of activities performed

by a team to accomplish a goal. A fundamental assumption
in the design of repeatable collaboration processes is that
each process consists of a particular sequence of thinkLets
that create various patterns of collaboration among the
team members. Each activity in the design of a collabora-
tion process can be supported by one or more thinkLets.
ThinkLets can be combined but in order to go from one
activity to the next, transitions are used. These concepts are
discussed in more detail below.

2.1. Thinklets

As presented above, a thinkLet is a named, packaged,
scripted collaboration activity that produces a predictable,
repeatable pattern of collaboration among people working
towards a goal. The initial conceptualization of thinkLet
comprised three components: A tool, a configuration and a
script (Briggs et al., 2001):
�

Ta

Co

Na

Lea

Pin

Ric

Str

Mo
The tool concerns the specific technology used to create
the pattern of collaboration—anything from yellow
stickies and pencils to highly sophisticated collaboration
technologies such as GSS.

�
 The configuration defines how the tool is prepared (e.g.

projected on a public screen), set up (e.g. configured to
ble 3

nceptualized thinkLet examples

me Tool Configuratio

fHopper GSS: group systems Several cate

participants

Categorizer

-the-Tail-on-the-Donkey GSS: group systems Participants

pin’sCategorizer

hRelations GSS: group systems Participants

can name ca

concepts

Categorizer

awPoll GSS: group systems Cast a vote

Vote

odRing GSS: group systems Allow to ad

Opinion meter
allow anonymous communication), and loaded with
data (e.g. a set of questions to which people must
respond).

�
 The script concerns everything a facilitator would have

to do and say to a group to create the required pattern
of collaboration (Briggs et al., 2003; de Vreede and
Briggs, 2005).
Each differentiation in the components of a thinkLet
influences the way in which people collaborate and is by
definition a new thinkLet. It is important to be aware of
such changes as research shows that small changes to, for
instance, thinkLet scripts can create significant differences
in group interactions, see e.g.Shepherd et al. (1996).
However, experience shows that thinkLets are very
customized to the situation at hand.
Knowledge of the three components of a thinkLet, it was

argued, would be sufficient for a practitioner to recreate the
pattern of collaboration (Briggs et al., 2001; Briggs et al.,
2003; Santanen and de Vreede, 2004; de Vreede and Briggs,
2001, 2005). Field trials with more than 200 novice trained
practitioners bore out the proposition that non-facilitators
who knew the tool, configuration, and script for a thinkLet
could, in fact, predictably and repeatable engender the
pattern of collaboration a given thinkLet was meant to
produce (de Vreede and Briggs, 2005). In Table 3, the
thinkLets of Table 2 are described in the tool configuration
script conceptualization.
2.2. Transitions

If thinkLets are building blocks for a collaboration
process, then transitions are the mortar that connects them.
The transition defines all the changes, events and actions
that must take place to move people from the end of one
n Script (summary)

gories to which

can add ideas

Explain categories

Explain how to add

Emphasize that participants work in the

category of their choice

can add annotation Allow a maximum amount of pin’s

Explain that participants should pin the

items they want to discuss

Discuss the pinned items

can read chauffeur

tegories and move

Ask participants to name related concept.

Document the name of the relation

Categorize concepts with the relation

Explain voting criterion and scale

Allow participants to vote

Discuss the results

just vote Explain topic, voting criterion and scale

Discuss topic while allowing participants to

adjust their vote



ARTICLE IN PRESS
G.L. Kolfschoten et al. / Int. J. Human-Computer Studies 64 (2006) 611–621 615
thinkLet to the beginning of the next. A transition design
must account for at least these aspects of change:
�
 Changes of Technology—when one thinkLet finishes, it
may be necessary to reconfigure a technology or to move
to a completely different technology before the next
thinkLet can begin.

�
 Changes of data—it may be necessary to transform the

output of one thinkLet in some way so that it can serve
as the input to the next thinkLet.

�
 Changes of orientation—It is necessary to alert team

members that one activity has finished and a new one is
about to start. In this alert, the team should reflect its
progress in reaching their goal.

�
 Changes of location—it may be necessary for people to

move from one place to another between thinkLets.

�
 Changes of membership—sometimes it is necessary to

change the composition of the team before the next
thinkLet begins.

Although the importance of transitions seems obvious, it
is hard to relate them to practice. Since Collaboration
Engineering and thinkLets are often used in combination
with GSS, part of the transition is automated. The role of
transitions in the design of reusable, transferable and
predictable collaboration process should yet be further
analysed.

2.3. Compound thinkLets and modifiers

Sometimes a specific combination of several thinkLets
are reused frequently in a variety of contexts. Such a
sequence of thinkLets and transitions can be amalgamated
into a named, reusable compound thinkLet (Kolfschoten
et al., 2004a). It can be wielded as a single building block
during process design.

Further, we noted that certain repeatable variations
could be applied to a set of thinkLets to create a
predictable change in the dynamics those thinkLets
produce. We called these variations modifiers, and gave
them names so they could be reused. For example, all
creativity thinkLets allow people to contribute any idea
that comes to mind. Using different tools and instructions,
we can adjust the size and depth of the brainstorm.
However, one could apply a OneUp modifier to any idea-
generation thinkLet. The OneUp modifier changes the
ground rules for brainstorming such that people may only
contribute new ideas that are arguably better along some
dimension than those already contributed. This modifica-
tion can be added to any brainstorming technique.

Although facilitators, collaboration engineers and prac-
titioners found the initial conceptualization of thinkLets,
transitions and modifiers to be useful, field experience
revealed a number of drawbacks (Kolfschoten et al., 2004b;
Kolfschoten and Veen, 2005). First, the original concept
tied a thinkLet closely to a specific technology in a specific
configuration. Strictly speaking, a new thinkLet would
have to be documented for any change of technology. Yet,
collaboration engineers in the field frequently implemented
the same thinkLet with a variety of different technologies.
This suggested that the tool-and-configuration constructs
might only be instances of a more-fundamental concept.
This is also consistent with Briggs’ guidelines for the
development of collaboration theory, which argue the
importance of concepts being independent of technology
(Briggs, 2004).
Second, the original model of thinkLets also tied a

thinkLet to a particular script. The purpose of the script is
to prescribe exact behavior of the facilitator to support and
instruct the group. Strictly speaking, this would mean that
a new thinkLet would be documented to record any
changes in the things a process leader did or said. Yet, both
professional facilitators and practitioners in the field often
deviated from the formal thinkLet script without signifi-
cantly changing the pattern of collaboration (Kolfschoten
et al., 2004a). Thus, it also seems that the existing thinkLet
scripts might be instances of some more-fundamental
concept.
Finally, under the original conceptualization, thinkLets

were difficult to classify (Kolfschoten et al., 2004b). A
reliable, detailed classification scheme for design compo-
nents is an important tool for design support in any
engineering discipline (Kolfschoten and Veen, 2005). The
root of this difficulty may have been that concept addressed
practical execution details of thinkLets rather than the
essence of a thinkLet. The most commonly used classifica-
tion scheme organizes thinkLets based on the patterns of
collaboration they engender (de Vreede et al., 2005). This
scheme proposes five general patterns of collaboration:
�
 Diverge: Move from having fewer to having more ideas.

�
 Converge: Move from having many ideas to a focus on

and understanding of a few deemed worthy of further
attention.

�
 Organize: Move from less to more understanding of the

relationships among ideas.

�
 Evaluate: Move from less to more understanding of the

value of ideas relative to one or more criteria.

�
 Build Consensus: Move from less to more agreement

among stakeholders so that they can arrive at mutually
acceptable commitments.

All thinkLets engender at least one of these patterns, so
this scheme is somewhat useful for deciding which thinkLet
might apply to a given situation. However, a number of
thinkLets invoke multiple patterns simultaneously, so this
scheme is not taxonomic. Further, it does not address
issues of requisite pre-conditions, deliverables, available
communication channels, and a host of other concepts that
are important considerations when choosing one thinkLet
over another.
In an effort to delve under the superficial properties of

the original thinkLets concept, we undertook to create a
base class diagram of group processes using the UML



ARTICLE IN PRESS

Manager

Contract

-description : String

-salary: double

Employee

+getManager()
:Manager

-name: String

is a special

1

0…*

has

1 has 1

Fig. 1. Types of relations in OO.

G.L. Kolfschoten et al. / Int. J. Human-Computer Studies 64 (2006) 611–621616
modelling language. The next section of the paper
articulates the new concept.

3. A new conceptualization of thinkLets

3.1. Object orientation

To develop the new conceptualization of thinkLets, we
drew on the object-oriented modeling approach that has
become the de-facto modeling paradigm for systems
engineering. The basic theory of object-oriented modeling
is to divide a system into classes and relations. A class is
characterized by a set of attributes, operations and
relations. Objects are specific instances of a class. All
objects based on a given class share the same set of
attributes, operations, relationships and semantics (Booch
et al., 1999). For example all automobiles (a class) have
wheels (an attribute). However, a particular Mercedes (an
object which is an instance of the class, automobile) may
have different kind of wheels than a given Volkswagen (a
different object with a different value for the wheels
attribute). Object-orientation distinguishes the following
two types of relations:
�
 Generalization versus specialization: class A is a general-
ization of class B if and only if every instance of class B
is also an instance of class A, and there are instances of
class A which are not instances of class B. Equivalently,
class A is a generalization of B if B is a specialization of
A.

�
 Association: where generalization specifies a relation

between classes, association refers to the structural
relation between objects, or instances. Aggregation is a
special form of association where a whole-part relation-
ship between the aggregate, i.e. the whole, and the
object, i.e. the part, is specified.

In the unified modeling language, UML, class diagrams
such as the one presented in Fig. 1 present the object
oriented view on a particular system. In this figure, both
types of relations are illustrated. The arrow connecting the
Manager and the Employee illustrates a specialization
relation. A manager is thus a special case of employee, and
as such its class inherits both name and contract from the
Employee class. The association between a manager and a
set of managed employees justifies the existence of the
Manager class. This relation is equivalent to the relation
between an employee and his name and contract.

3.2. The ThinkLet class diagram

Fig. 2 illustrates a class diagram for a collaboration
process. The model incorporates the key concepts that
must be taken into account when creating a design for a
particular collaboration process. This section explains each
of the components in that model, in more detail.
3.2.1. Collaboration process

The central component of this model is the Collabor-
ationProcess. Collaboration processes have a name attri-
bute to identify them (e.g. Strategic Planning or Marketing
Focus Group). Because all collaboration has some
purpose, all collaboration processes also have a goal

attribute. For a recurring collaboration process, the goal
is typically instantiated as the deliverables that the team
must create.

3.2.2. Participant

In a collaboration process, a group of 3 or more
(Krackhardt, 1999) participants agree to work together
towards the goal. Participants have a name attribute and
they fulfill a certain role in the collaboration process.

3.2.3. ThinkLet

The collaboration process that people use to achieve
their goal is composed of a series of thinkLets. A thinkLet
is a named, packaged facilitation intervention that creates a
predictable, repeatable pattern of collaboration among
people working together toward a goal (Briggs et al., 2003).
ThinkLets have a name attribute. The name is often
intended to be catchy and somewhat amusing so as to be
memorable, and it is usually intended to remind the
collaboration engineer of the specific pattern the thinkLet
invokes. For example, in the LeafHopper thinkLet,
participants jump from topic-to-topic at will, making
contributions in different categories as inspiration strikes.
ThinkLets always supports the group in modifying a data
set, whether captured (written down) or virtual (in a
discussion). ThinkLets can be combined with other
thinkLets (Kolfschoten et al., 2004a) yielding compound

thinkLets that evoke more complex patters of collabora-
tion, or a sequence in the pattern of collaboration.

3.2.4. Capability

The new approach to modeling thinkLets departs from
the original convention of tool, configuration and script.
Any tool, configured in a given fashion, affords certain
capabilities. It may be possible to afford those same



ARTICLE IN PRESS

thinkLet 

-name: string
-patternofcoll: string
-successor: thinkLet
-predecessor: thinkLet

1..n

Rule

-constraint: string

Action

-name: string

1..1Role

-name: string

1..n

Capability

-name: string

0..1

Collaboration Process

-name: string
-goal: string

1..n

Participant

-name: string

3..n

1..n

Dataset

+alter(Action)

1..n

1..n
1..n

1..n

1..n

1..n

1..n

1..1

1..1

1..1

1..1

1..n

1..1

1..n

extends

Modifier

-name: string

0..n 2..n

1..n

Parameter

-name: string

1..n

1..n

extends

1..1

1..1

Fig. 2. A class diagram of collaboration processes.

G.L. Kolfschoten et al. / Int. J. Human-Computer Studies 64 (2006) 611–621 617
capabilities with a variety of other tools. The new model
therefore incorporates the concept of capabilities, while
leaving the decision of how to realize those capabilities to
the collaboration engineer. For example, the LeafHopper
thinkLet requires the following capabilities: One page for
each of several brainstorming topics. The possibility to
display the topic of each page. The ability to contribute
ideas to all pages. In an actual workshop, these capabilities
could be afforded by flipchart pages taped to a wall and
markers, or by a sophisticated GSS. When instantiated the
tool and configuration of that tool that enable the
capability should be defined.

3.2.5. Action

Once the capabilities have been provided to participants,
they are instructed to execute certain actions—e.g. add,
edit, move, delete, judge—using those capabilities.

3.2.6. Rule

Under the old conception of thinkLets, the script
explained the actions people were to take, the constraints
they were to apply to their actions, and the capabilities they
were to use. However, these concepts could be conveyed by
any number of scripts, i.e. a given script is merely a
particular implementation of these concepts. Therefore, the
new conceptualization captures the rules rather than the
complete script of a thinkLet. Rules describe actions that
participants must execute using the capabilities provided to
them under some set of constraints. In all thinkLets,
individual actions are subject to constraints. For example,
the brainstorming question constrains the kind of concepts
a person contributes to an ideation thinkLet.
To execute a given thinkLet, the participants must

become aware of the rules that are to drive their efforts. If
each participant executes their actions as guided by the
rules, together they will produce the desired pattern of
collaboration. For example, the rules of the FreeBrain-
storm thinkLet require that added contributions must
relate to the brainstorming question at hand and pages
must be swapped after each contribution. A GSS can
automatically enforce the page-swapping rule; a group
working on paper must rely on social protocols and
voluntary compliance.
Thus, under this framing, the thinkLet becomes technol-

ogy- and script-independent. The designer of the process
may choose any technology that provides the capabilities,
and may choose any means to convey information and
constraints to the team. This reduces the theoretical
amount of possible thinkLets.
The small changes to the rules that guide actions can give

rise to very different patterns of collaboration. For
example, an ‘add’ action guided by a ‘summarize’ rule
gives rise to abstraction, synthesis and generalization, while
an ‘add’ action guided by an ‘elaborate’ rule gives rise to



ARTICLE IN PRESS
G.L. Kolfschoten et al. / Int. J. Human-Computer Studies 64 (2006) 611–621618
increasingly detailed exposition of present concepts. Thus,
the process designer must take care to choose rules
purposefully and to express them carefully.

3.2.7. Parameter

In many thinkLets, there are certain pieces of informa-
tion that must be conveyed to the team in order for them to
work effectively. For example, in a brainstorming thinkLet,
there is always a brainstorming question. In a polling
thinkLet, there are always one or more voting criteria. The
new model of thinkLets therefore incorporates the concept
of parameters, which are variables whose content; a name
and value(s) must be instantiated for each thinkLet.

3.2.8. Role

In some thinkLets, different actors must behave accord-
ing to different rules (with different constraints actions and
capabilities). The new model therefore incorporates the
concept of roles. For example, in the ChauffeurSort
thinkLet one person acts as the scribe while others discuss
how concepts should be organized. Thus, the thinkLet
requires two roles. In the PopcornSort thinkLet, however,
all participants work in parallel, moving ideas into the
categories where they best fit. This thinkLet has only one
role.

3.2.9. Modifier

Finally, a modifier is a reusable rule that can be applied
to a set of two or more thinkLets to change their dynamics
Table 4

Re-conceptualized thinkLet examples

Name & pattern of

collaboration

Rule (constraint)

LeafHopper Diverge 1. Add ideas to page in scope of the discussion top

and scope (Y)

2. Add to any page at random as your interests d

Pin-the-Tail-on-the-

Donkey Converge

1. Select the amount (X) of ideas (Y) that you con

key contributions

2. Read the indicated key contributions

3. Explain and discuss why a selected idea is a ke

contribution

RichRelations 1. Read the ideas (X) and identify related (X)

2. Defineand add the relation (Y)

3. Connect the X to the YOrganize

StrawPoll 1. Judge each idea (A) on criterion (X) ranging f

scale min (Y) to scale max (Z)

2. Discuss the results of the combined votingEvaluate

MoodRing 1. Indicate your opinion on issue (X) on criterion

ranging from scale min (A) to scale max (B)

2. Discuss the issue

3. Indicate any change in opinion

4. Continue until there is sufficient consensus

Build Consensus
in some predictable way. For example, the OneMinute-
Madness modifier can be applied to any ideation activity.
About a minute after the start of the brainstorm, the
moderator stops the participants for a few moments to
discuss whether their contributions are sufficiently respon-
sive to the brainstorming question, and to clarify the rules
and constraints of the thinkLet. Afterwards, brainstorming
resumes.

4. An example

ThinkLets are instantiated on 2 levels. First, the
instantiation is made as described above. This is illustrated
for a number of thinkLets in Table 4, which presents the
thinkLets from Table 2 in the new conceptualization for
the general participant role. This way, thinkLets are
described with a name, pattern of collaboration, successor
and predecessor, parameter data set, rules with constraints,
action and capability. Note that in Table 4 we describe
independent thinkLets, which are not connected to a data
set or connected with successors and predecessors in a
collaboration process.
The thinkLets thus can be used for any collaboration

process. In order to use for instance LeafHopper to do a
SWOT analysis (strengths, weaknesses, opportunities,
threats), we need to do a second instantiation, called
implementation, in which we specify the parameters, rules
and the capabilities, by providing the brainstorm question,
(e.g. what are the factors that need to be considered in our
Capability (name) Action

(name)

Parameter (not

instantiated)

ic (X)

ictate

A page for each X Add X: discussion topic

Y: brainstorm question

sider

y

X discriminators Judge X: amount

Read Y: idea

Discuss

A link for each Y

connecting X1 and X2

Read,

judge

X: idea

A page for each Y Add

relate

Y: relation

rom A scaled discriminator

for each idea

Judge A: idea

Processing of the

combined results

Discuss X: criterion

Y: scale min

Z: scale max

(Y) A reusable scaled Judge X: issue

Discriminator for the

Issue

Discuss Y: criterion

Judge A: scale min

B: scale max



ARTICLE IN PRESS
G.L. Kolfschoten et al. / Int. J. Human-Computer Studies 64 (2006) 611–621 619
company strategy?), the discussion topics, (e.g. strengths,
weaknesses, opportunities, threats), the tool and config-
uration, (e.g. 4 whiteboards with the topics and a marker
for each participant) and a script with precise instructions
for the facilitator.

Note that each of the thinkLets requires a different
combination of actions, under a different combination of
rules. For instance, the StrawPoll allows participants to
render judgments once about multiple concepts, while the
MoodRing allows for continuous changes in judgment
over time with respect to a single concept. Process designers
may find that the actions-and-constraints model of
thinkLets may provide a useful basis for selecting among
available thinkLets at design time. This new framing may
provide a more rigorous basis for classifying and choosing
thinkLets.

5. Discussion and conclusions

A thinkLet is a named, packaged activity that produces a
predictable, repeatable pattern of collaboration among
people working toward a goal. The purpose of a thinkLet is
to capture the smallest-possible unit of intellectual capital
required to recreate a particular pattern of collaboration
with specific results. ThinkLets serve as building blocks for
designers of collaboration processes. This paper offers a re-
conceptualization of the thinkLet concept in terms of
elementary participant actions, physical capabilities, rules,
roles and parameters, rather than tool, configuration and
script. As a result, the new thinkLet conceptualization
describes the requirements to create a certain pattern of
collaboration independent from a technology and its
configuration. This allows a collaboration engineer to
choose appropriate thinkLets and subsequently select and
adapt available technologies and facilities to instantiate the
required capabilities. This reframing has clarified some
ambiguities and eliminated some apparent challenges
surrounding the old framing of the thinkLets concept.
Although it is impossible to predict everything about a
dynamic collaboration process, the new thinkLet concept is
expected to offer more support to the collaboration
engineer. In particular, it has the following advantages:

First, the thinkLet concept is now technology indepen-
dent. As technologies change, a concept that is independent
of these changes will be more consistent. Also, some of the
descriptions of thinkLets already indicated that different
tools could be used to reach the same result. This
ambiguity has been removed.

Second, the cognitive load of the thinkLet concept is
reduced. Since the ambiguity is resolved, it will be easier to
transfer specific thinkLet objects to novice collaboration
engineers and the instantiations of these thinkLets to
practitioners.

Third, even with the new modeling convention, a very
large, if not infinite set of thinkLet instantiations can be
defined. However, the new thinkLets allow different
instantiations and customizations, and the concept allows
thinkLets to be modified adding additional rules. An
analysis of a collection of thinkLets based on rules, roles
and parameters, should make it possible to distill
redundancy out of the collection. It may also be possible
to abstract modifiers from a large collection of thinkLets,
thus reducing combinatorial complexity.
Finally, the new conceptualization allows researchers to

better compare differences and similarities in thinkLets and
therefore also allows a better explanation for differences in
apparently similar studies, and better design and operatio-
nalization of case and field studies on the effects of
facilitation interventions and collaboration process design
(Santanen, 2005).
There are a number of limitations with respect to the

research presented in this paper. Each of these limitations
gives rise to exciting avenues for future research. First,
although the new conceptualization may give rise to a
taxonomic classification scheme for thinkLets, no such
scheme has yet been derived. To this end, it would be
fruitful to compare other classifications in disciplines that
are both close and distant from Collaboration Engineering,
such as small group research (e.g. McGrath’s (1984) task
circumplex), GSS research (e.g. Bostrom et al., 1993;
Bostrom and Anson, 1992)’s electronic meeting tasks and
Zigurs and Buckland’s (1998) task-technology fit model),
workflow systems research (e.g. the Workflow Manage-
ment Coalition’s (2002) specification of workflow pro-
cesses), telematics (e.g. BETADE’s (Verbraeck and
Dahanayake, 2002) telematics services building blocks),
software development, (Briggs, 2004) and architecture
(Alexander (1979)’s pattern language). A taxonomic
thinkLets classification is critical to facilitate the choice
of a thinkLet. Given the new, more elementary, con-
ceptualization of thinkLets, we expect the creation of a
taxonomic classification may be easier. In addition, we
anticipate it be more straightforward to define a set of
thinkLet choice criteria.
A taxonomic classification will also help to identify

redundancy in the current thinkLet set. Some current
thinkLets might be identified as variations on other
thinkLets, resulting in a more limited yet more sharply
defined final set of basic thinkLets that clearly differ from
each other. If we can classify these we can also identify the
area’s where the current thinkLets do not provide solutions
and new thinkLets or modifiers are required. This research
is one step further on the path towards this goal.

Second, the current framing of the thinkLets still leaves
open some questions. For example, Shepherd et al. (1996)
demonstrated that slight variations in facilitator instruc-
tions that had no impact on rules, but rather touched on
motivation, produced significant differences in group-
productivity. The proposed new framing of thinkLets does
not address that effect. In general thinkLets are focused on
solving complexity of task or content rather than on
complexity of group dynamics.

Third, new thinkLets classifications may be explored
based on the new components of thinkLets. It appears that



ARTICLE IN PRESS
G.L. Kolfschoten et al. / Int. J. Human-Computer Studies 64 (2006) 611–621620
especially the rules represent a promising starting point.
For example, the rule ‘generalize’ could classify all
thinkLets that use a given data set and produce the essence
of that data set.

Fourth, the class model of Collaboration processes
captures all the objects that must be considered when
designing a collaboration process. However, it is not
intended to convey the process itself, there is no sequence
of steps in the model, just the components of the
collaboration process are displayed. Transitions only
contain process elements and are therefore excluded from
this model. However, they could be part of a different
modeling convention that conveys the flow and logic of a
collaboration process as a team moves toward its goals.
This model can be built as an extension on the facilitation
process model described in de Vreede and Briggs (2005).

Finally, although the thinkLet concept seems to have
evolved into a more useful one, we need to confirm that
indeed it is an improvement both in practice and in theory
by testing its use in collaboration process design and
execution.
Acknowledgements

The authors gratefully acknowledge Daniel Mittleman
and Alexander Verbraeck for their contributions to the
new conceptualization of thinkLets. Furthermore we thank
Johanna Bragge, Mariëlle den Hengst-Bruggeling, and the
anonymous reviewers for their constructive feedback on
this paper.
References

Alexander, C., 1979. The Timeless Way of Building. Oxford University

Press, New York.

Appelman, J.H., van Driel, J., 2005. Crisis-response in the port of

Rotterdam: can we do without a facilitator in distributed settings? In:

Hawaii International Conference on System Science. IEEE Computer

Society Press, Los Altos.

Booch, G., Rumbaugh, J., Jacobson, I., 1999. The Unified Modeling

Language User Guide. Addison-Wesley, Indianapolis.

Bostrom, R.P., Anson, R., 1992. The face-to-face electronic meeting: a

tutorial. In: Bostrom, R.P., Watson, R.T., Kinney, S.T. (Eds.),

Computer Augmented Teamwork, A Guided Tour. Van Nostrand

Reinhold, New York, pp. 16–33.

Bostrom, R., Anson, R., Clawson, V.K., 1993. Group facilitation and

group support systems. In: Jessup, L.M., Valacich, J.S. (Eds.), Group

Support Systems: New Perspectives. Macmillan, New York.

Briggs, R.O., 2004. On theory-driven design of collaboration technology

and process. In: de Vreede, G.J., Guerrero, L.A., Raventos, G.M.

(Eds.), CRIWG. Springer, San Carlos, Costa Rica, pp. 1–15.

Briggs, R.O., de Vreede, G.J., Nunamaker Jr., J.F., David, T.H., 2001.

ThinkLets: achieving predictable, repeatable patterns of group

interaction with group support systems. In: Hawaii International

Conference on System Sciences. IEEE Computer Society Press, Los

Altos.

Briggs, R.O., de Vreede, G.J., Nunamaker Jr., J.F., 2003. Collaboration

engineering with thinklets to pursue sustained success with group

support systems. Journal of Management Information Systems 19 (4),

31–63.
Enserink, B., 2003. Creating a scenariologic—design and application of a

repeatable methodology. In: Hawaii International Conference on

System Sciences. IEEE Computer Society Press, Los Altos.

Fjermestad, J., Hiltz, S.R., 1999. An assessment of group support systems

experimental research: methodology and results. Journal Of Manage-

ment Information Systems 15 (3), 7–149.

Fjermestad, J., Hiltz, S.R., 2001. A descriptive evaluation of group

support systems case and field studies. Journal of Management

Information Systems 17, 3.

Griffith, T.L., Fuller, M.A., Northcraft, G.B., 1998. Facilitator influence

in group support systems. Information Systems Research 9 (1), 20–36.

Harder, R.J., Higley, H., 2004. Application of thinklets to team cognitive

task analysis. In: Hawaii International Conference on System Sciences.

IEEE Computer Society Press, Los Altos.

Harder, R.J., Keeter, J.M., Woodcock, B.W., Ferguson, J.W., Wills,

F.W., 2005. Insights in implementing collaboration engineering. In:

Hawaii International Conference on System Science. IEEE Computer

Society Press, Los Altos.

Hlupic, V., Qureshi, S., 2002. What causes value to be created when it did

not exist before? A research model for value creation. In: Hawaii

International Conference on System Sciences. IEEE Computer Society

Press, Los Altos.

Hlupic, V., Qureshi, S., 2003. A research model for collaborative value

creation from intellectual capital. In: Twentififth International

Conference of Information Technology Interfaces. Cavtat, Croatia.

Kolfschoten, G.L., Veen, W., 2005. Tool support for GSS session design.

In: Hawaii International Conference on System Sciences. IEEE

Computer Society Press, Los Altos.

Kolfschoten, G.L., Appelman, J.H., Briggs, R.O., de Vreede, G.J., 2004a.

Recurring patterns of facilitation interventions in GSS sessions. In:

Hawaii International Conference On System Sciences. IEEE Computer

Society Press, Los Altos.

Kolfschoten, G.L., Briggs, R.O., Appelman, J.H., de Vreede, G.J., 2004b.

ThinkLets as building blocks for collaboration processes: a further

conceptualization. In: de Vreede, G.J., Guerrero, L.A., Raventos,

G.M. (Eds.), CRIWG. Springer, San Carlos, Costa Rica, pp. 137–152.

Krackhardt, D., 1999. The ties that torture: simmelian tie analysis in

organizations. Research in the Sociology of Organizations 16,

183–210.

Lowry, P.B., Albrecht, C.C., Nunamaker Jr., J.F., Lee, J.D., 2002.

Evolutionary development and research on internet-based collabora-

tive writing tools and processes to enhance e-writing in an e-

government setting. Decision Support Systems 34, 229–252.

McGrath, J.E., 1984. Interaction and Performance. Prentice-Hall, Inc.,

Englewood Cliffs, NJ.

Niederman, F., Beise, C.M., Beranek, P.M., 1996. Issues and concerns

about computer-supported meetings: the facilitator’s perspective.

Management Information Systems Quarterly 20 (1), 1–22.

Nunamaker Jr., J.F., Dennis, A.R., Valacich, J.S., Vogel, D.R., George,

J.F., 1991. Electronic meeting systems to support group work.

Communications of The ACM 34 (7), 40–61.

Santanen, E.L., 2005. Resolving ideation paradoxes: seeing apples as

oranges through the clarity of thinklets. In: Hawaii International

Conference on System Sciences. IEEE Computer Society Press, Los

Altos.

Santanen, E.L., de Vreede, G.J., 2004. Creative approaches to measuring

creativity: comparing the effectiveness of four divergence thinklets. In:

Hawaiian International Conference on System Sciences. IEEE

Computer Society Press, Los Altos.

Shepherd, M.M., Briggs, R.O., Reinig, B.A., Yen, J., Nunamaker Jr., J.F.,

1996. Social comparison to improve electronic brainstorming: beyond

anonymity. Journal of Management Information Systems 12 (3),

155–170.

Thompson, J.D., 1967. Organizations in Action. McGraw-Hill, New

York.

Verbraeck, A., Dahanayake, A., 2002. Building Blocks for Effective

Telematics Application Development and Evaluation. Delft University

of Technology, Delft.



ARTICLE IN PRESS
G.L. Kolfschoten et al. / Int. J. Human-Computer Studies 64 (2006) 611–621 621
de Vreede, G.J., Briggs, R.O., 2001. ThinkLets: five examples of creating

patterns of group interaction. In: Ackermann, F., de Vreede, G.J.

(Eds.), Group Decision & Negotiation. La Rochelle, France,

pp. 199–208.

de Vreede, G.J., Briggs, R.O., 2005. Collaboration engineering: designing

repeatable processes for high-value collaborative tasks. In: Hawaii

International Conference on System Science. IEEE Computer Society

Press, Los Altos.

de Vreede, G.J., Davison, R., Briggs, R.O., 2003. How a silver bullet may

lose its shine—learning from failures with group support systems.

Communications of the ACM 46 (8), 96–101.
de Vreede, G.J., Fruhling, A., Chakrapani, A., 2005. A repeatable

collaboration process for usability testing. In: Hawaii International

Conference on System Sciences. IEEE Computer Society Press, Los

Altos.

Workflow Management Coalition, 2002. Workflow Management Coali-

tion Workflow Process Definition Interface—XML Process Definition

Language 2004, http://www.wfmc.org/standards/docs/TC-1025_10_

xpdl_102502.pdf

Zigurs, I., Buckland, B., 1998. A theory of task/technology fit and group

support systems effectiveness. Management Information Systems

Quarterly 22 (3), 313–334.

http://www.wfmc.org/standards/docs/TC-1025_10_xpdl_102502.pdf
http://www.wfmc.org/standards/docs/TC-1025_10_xpdl_102502.pdf

	A conceptual foundation of the thinkLet concept �for Collaboration Engineering
	Introduction
	Thinklets and collaboration process design
	Thinklets
	Transitions
	Compound thinkLets and modifiers

	A new conceptualization of thinkLets
	Object orientation
	The ThinkLet class diagram
	Collaboration process
	Participant
	ThinkLet
	Capability
	Action
	Rule
	Parameter
	Role
	Modifier


	An example
	Discussion and conclusions
	Acknowledgements
	References


